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ABSTRACT

The analytical solution of the heat conduction equation for a
gun tube (circular, thick-walled cylinder} assumed, for simplicity,
to be of infinite length, is obtained. The temperature function is
assumed to have axial and angular symmetry and, therefore, is depen-
dent only upon time and radial distance. The axial flow has been
neglected because the projectile moves through the tube at a much
faster rate than heat can penetrate the tube. The 1nitial and
houndary conditions have been considered as close as possible to
those encountered during the repeated firing of a gun. The tempera-
ture distribution in a barrel can be determined provided that the
propellant gas temperature during the firirg of each round is known
and that the nature of the heat transfer from the gas to the barrel
wall is known.
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NOMENCLATURE

a

f(r)

inside radius of gun tube
outside radius of gun tube

tine

= gas and natural convection coefficients of guw. tube,

it

respectively

thermal conductivity of gun tube

radial distance of a point from the axis of the cy]indeg
temperature of point r at time t

propellant gas temperature function

a transient part of temperature of the total temperature
a transient part of temperature of the total temperature
a steady-state part of temperature of thg tetal températdre
ambient temperature '
thermal diffusivity of barrel material

e1genvalues of equation (30)

Bessel functions of first and second kinds of order zero,
respectively

Bessal functions of first and second kinds of order one,
respectively

modified Bessel functions of first and second kinds of
order z2ero, respectively

moditied Bessel functicns of first and second kinds of
order one, respectively

initial temperature distribution




INTRODUCTION

The solution to the initial-boundary value problem for the
conduction of heat in a thick-walled cylinder is of considerable
technological importance, particularly, in the gun tube heat
transfer analysis. These problems have consequently attracted
considerable attention, and a number of special solutions!-6
have been developed. Mow, Pascual, and Pascale! dealt with the
problem of radial flow of heat in a gun tube assumed to be
infinitely long. In their investigations, the initial and boundary
conditions were assumed to be T(r,t) =0 for t £ 0, T(a,t) = ¢(t)
for t 2 0, and T(b,t) = 0 for ai1 t. Apparently, the surface
conductance on both inner and outer surfaces of a gun tube has
been disregarded in their analysis. A similar problem, with a
convective boundary condition on the outer surface of a gun tube,
was solved by Pascual, Zweig, and Sutherland.2 By virtue of the
fact that the initial condition was assumed to be zero in the above
two investigations, the problem solved by these investigators is
essentially the first round problem. Comenetz3 gave a solution for
the temperature distribution in a hollow cylinder of infinite length
supplied with heat through the inner surface. The rate of heat
input was permitted to vary linearly (or at most quadratically) with
time and the initial temperature of the hollow cylinder was assumed
to be zero. A more general solytion of heat flow _in a finite, hollow,
circular cylinder was given by Olcer.* However, Olcer's method is
very time-consuming and difficult to ob%ain desirable numerical results.
rv solve the gun barrel heat-transfer problem practically, a relatively
simple solution that closely approximates the actual firing conditions
of the gun is necessary. This report is intended to serve this
purpose.

OBJECTIVE

One of the many causes of gun barrel faiilure occurs when the
effective thermal stress level in the interior of the small caliber
gun tube exceads the yield strength of the barrel material.

To determine the thermal stresses in a barrel, the temperature
distribution within a barrel must first be determined. Therefore,
the purpose of this investigation is to obtain the analytical solution
of the heat conduction equation for a gun tube subjected to an arbi-
trary initiel condition and to boundary conditions that are as close
as possible to those encountered during the actual single and repeated
firing.

[32]
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FORMULATION OF THE PROBLEM

The unsteady temperature field in a homogeneous, isotropic gun
tube is assumed to have axial and angular symmetry and, therefore,
is dependent only upon time and radial distance. For simplicity, the
gun tube is assumed to be of infinite length, and the thermal prop-
erties assumed to be independent of the temperature for each small
time-interval during each firing round. Ther the heat flow in a gun
tube is governed by the well-known Fourier heat conduction equation.®

%;; + %. %l = %- %% i a<r<b,t-0 (1)

where o > 0 denotes thermal diffusivity. In addition, the following
initial and boundary conditions are specified for T(r,t):

T(r,0) = f(r), a<r<b,t=20 (2)
aT

Kor = -hl[Tg(t)-T] ; r=a,t>0 (3)
2

K2E = -hy[T-T)] 5 Frb, b0 (4)

where T,(t) is the propellant gas temperature function at the bore
surface; Ty is the ambient temperature, f(r) is the initial temperature
distribution at the beginning of each small time-increment, or the
beginning of each round, h; and h, are respectively gas and natural
convection coefficients, and K is the thermal conductivity of the gun
tube.

The convection voefficients, h, and h,, at the bore surface and
at the outer surface of a barrel may be assumed to vary at each small
time-interval during each firing round. This justification introduces
a way to consider the radiation boundary conditions at the bore and
at the outer surfaces of a gun tube. The heat input is permitted to
vary with time; in general, the propeliant gas temperature function
can be assumed to he a combination of various exponential functions.

METHOD OF SOLUTION

Since the boundary condition (3) is not homogenesus, the method
of separation of variables cannot be applied directly. The Laplace
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transform method is considered; however, the authors find that, if

the Laplace transform technique is used alone for solving this problem,
the inverse transform is very difficult to obtain. The combination of
Laplace transform and separation of variables will be adopted.

Because of the linearity of the problem, the solution to this
problem is readily verified and may be written in the form

T(rot) = To(r,t) + Tg(r) + Tp(r,t);  a<r<b, t20 (5)

where T,(r,t) satisfies the following equations:

(-3

Ta

2
oT
Kare -h,Ty = -h,Tg(t) r=a,t>»0 (7)
aT .
K + h,Ty=0; r=b,t>0 (8)
Talr,t) = 03 asrfb,t=0 (9)
T¢{r) satisfies the following equations:
d?T dT
WSL+JFH?‘§—=O; a<r<b (10)
Kg—;‘i “h;Tg =03 r=a (1)
dTs
K * h,Te = hyTp 3 r=h (12)
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and Tb(r,t) satisfies the following equations:

92Ty 1 a3 _ 1 2aTh, - < = (
F A T T a<r<b, t=0 (13)
kb 7= 0 r=a, t>0 (14)
ir 1'b 4 H)
' =
K SFh. + hTp=0; r=b, £>0 (15)
Ty(rot) = £(r) - Tg(r) asSrsb,t=0 (16)

The solution for Ta(r,t) is the one that satisfies the homogeneous
differential equation (6) with nonhomogeneous boundary condition (7),
homogeneous boundary condition (8) and with zero initial temperature
distribution (9). The solution for T,(r,t) will be obtained by use of the
method of Laplace transform. The proglem invelving Tg(r) is one of a
steady-state temperature distribution that can be readily solved by the
usual technique of solving ordinary differential equations. Once the
problem regarding Tg(r) is solved, the problem concerning Ty(r,t) is com-
pletely defined and is the one with homogeneous differentia? equation (13)
and boundary and initial conditions (14), (15) and (16). Since the boundary
conditions involving Tp(r,t) are homogeneous, Tp{r,t) can be obtained by
the method of separation of variables. When Ty(r,t), Tg(r), and Th(r,t)
are obtained, then the complete solution to the problem formulated in

the previous sectien is given by equation (5).

SOLUTION

(A) Solution for Ty(r,t)

The Laplace transform of equation (6) is given by

2T i -
%F;& + %- %;a -q%T; = 0 a<r<b (17)
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where q2 = p/o and Ty is defined by

]

Ty = | e Pt T (r,t)dt (18)
o]

The complete sclution of the Bessel equation (17) is
T, = Al (ar) + BKy(qr) {(19)

where 1, and are modified RBessel functions of order zero. The
constangs A and B are determined so that T, sazisfies the Laplace
transform of equations (7) and (8), namely

dT. - -
= “MTa = -hTglp) 3 r=a (20)
dTQ = .
KEF— +h2Ta=0 H r=>n (2])
7
where Tg(p) = e Pt Tg(t)dt (22)
o

Substituting equation (19) into equations (20) and (21), one obtains

A [-h,Io(qa) + KqI (qa)] - B [h.Ko(aa) + KaK:(aa)] = -hyTglp)  (23)
and
A [hyIo(ab) + Kql;(gb)] + B [h,Ky(ab} - KaK;(qb)] = 0 (24)

Solving A and B from equations {23) and {24), and substituting into
equation (19}, one obtains

_ -Tgtp)h, ilk,Ko(ab) - KK, (ab)diglar} - [n,To(ab) + Kal,(ab)Tko(ar)}

r
a alp)

(25)
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vhere a(p) = [h,I5(gb) + Kql,(gb)] [h,Ko(qa) + KaK,(ga)]
- [ I5(qa) - KaI,(qa)] [h,K,(ab) - KqK,(qb)] (26)

Suppose

-h, t[h,Ko(ab) - KaK, (gb)J14(qr) - [h,Io(ab) + KqI (ab)IK,(ar)}
v a(n) (27)

Then equation (25) becomes

Ty =T

o7 (23)

T1 is now determined by the Inversion Theorem, i.e.,

=7 1 [T,1 -

Ytiw
-1 { e P* h ([h,Ko(qb)-KaK, (ab)JTo(ar)-[h,Io(ab)+Kql, (ab) IKo(qr)} dp
2ni l a{p) (29)
Yein

The integrand is a single-valued function of p with simple poles at
p =-a8f, where 8, are the roots of

[h,d,(8b) - Kad (3b)] [h Y (8a) + KeY,(8a)]

- [h Jo(sa) + Ksd,(Ba)] [h,Y,(sb) - KgY,(8b)] = 0 (30)

10




Since Io(ignr) = dy(B,r), 1,(i8,r) = 13,(8yr),
KoliBpr) = -n/2 [i3,(8,r) + Yo(Br)], and
K, (igyr) = a2 -9, (8,r) + 1Y (8,r}]

To find the residue at pole p = -aB%, one needs

&~ -i - -
da{p) | =
dp i

- L —QB% - - = ien

|
?'ZaA

b [-h,Io(xa) + KaL,(2a)] [h,K, (ab) - Kaky(ab)]

a [h,Io(xb) + Kl (ab)] [h K (a2) + KaKy(+a)]

V)
+b [h,1;(Ab) + KaI (ab)] [h,K (-a) + KxKl(:\a)])%“

J =g,

where equation (26) and the recurrence formulae’ have been used.

simplify equation [31), when a = ig,,

-h]Io(xa) + Kal,{xa) ) -[h;Ko(Aa) + KaK {aa))
h,I,(xb) * KaT (3b] h h,Ko(2b) ~ K+K (b]

-[h9o(8q2) + Kepd (8pa)]  -[h,Yo(Bn2) = Key¥ (8a)]
hado(Bgd) = Ke,Ji(BBY ~ M,V (Bnd) - K8,Y (B,H)

11

1 ( a [ hi1,0a) + Kal(aa)] [hyKy(3k) - KaK,(ab)]

To

(31)

(32)



With the use of this resuit and the YWronskian relation, equation (31)
4 can be written

) | ey - o) |
é o i ) ax 1 208n p\hz K an) ____6_____
b _ )\=i3n I_ _!

(h§+K28%)[-hldo(Bna)-KBndl(Bna)]2-(h§+KZB%)[hzdo(snb)~KBnJ1(Bnb)]z
2083[-h Jg(Bra)-Kapd (8a)] [h,do(Bab)-Kend, (Byb)]

- F (8n)
i 208%[-h,J,(Bna)-K8pd, (8a)] [h,d,(Bpb)-K8d, (8nb)]

(33)
where

F(8y) = (h3+K282) [h Jo(8na)*Kend, (Bna)12-(h?+K262) [h,J, (8,b)-Kapd, (Bpb)]2
(34)

The residue at the pole p = -aBj or A = igy8 is

lim (p*ai) - © bt h; {[h,Ka(xb)-KaK; (Ab) 114 (ar)-[h, 15 (Ab)+KAT, (Ab) Ky (A1)}
p -+ -aBl

Y e -]Bn A(p)
E: -aR2
3 % r3h, ?%g;T e OBt Cy(8y.r) [, Jo(8n2)+kayd, (Bna) ILhy3, (84b)-K3,d, (Byb)]
3 (35)
wihere

ColB,r) = [hzdo(ﬁnb)-KenJI(Bnb)]Yo(Bnr)-[tho(Bnb)~K3nY1(snb)]do(enr)

;é (36)

12
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g Thus,

- 3% -aBZt

Ty(r,t) = noh ___}:“m g "o'n” Coisy,r) G(8,)

n=1

3 where

G(ﬁn) = [hldo(ﬂna)*xﬁndl(sna)](hzdo(snb)‘KBnJ.‘x(Bnb)]

7 Applying the Inversion Theorem to equation (28), one obtains

Al -1 _ - _

f Ta(Y‘,t) = j [Ta] =‘:{’ [TgT ]

g

ol

f; Applying the Convolution Theorem,® one notes that

: -1 =1 =

i Tot) =27 " [g(p)] and  Ty(rit) = ° [Ty(r;p)]

And finally

;; :

Talrst = J Ty(t-2) T,(z)dg

| :

_ [ - 612; ~ap2t

= nuhl J Tg(t"C) E F(EYD- e n CQ(BYI’Y‘) G(Bn) dg

x o n=y

o t

\ = nah 4 P ) G(gy) | Tylt-g) e ~B0° d
wah, _ ?TEET olBror) Glg, glt-c) e n- dg

" 0

13

(37)

(38)

(39)




. (B) Solution for T¢(r)

The general solution of the differential equatien {10) is

Tg{r) = Alog r + B (41)

k. where A and B are constants that are determined so that Tq satisfies
s the boundary conditions {11) and (12).

} Substituting equation (41) into equations (11) and (12) and
4 solving for A and B, one obtains

:‘ A = h‘hz TA _ h1h2 TA

1 I h ) h, h

“ L2 b 1L, M b

K (5=~ 3 -hh, log = K {5+ + hyhy Tog 2

h (42)
% (K== -h,h, Tog a) Tp

““ B = —

h h
K (-B-'r -5-) + h.h, Iag.a.

Substituting A and B into equation (41), one gets

T r h,

] Ts(r) = oy Tog gtk gliacrad

K- sy {

: K {g-+ ) # hyhy Tog 2 {43)
‘E (C) Sciution for Tp(r,t)

3 Once T (r) has been obtained from equation (43), the initial con-
g dition equaiion (]6) involving Tpir,t) ic completely defined. Since

{ the boundary conditions (14) and 215) are homogeneous, the homogeneous
k: differential equation (13) can be readily seived by separation of vari-

3 ables. The function Typ{r,t) = R(r) 8(t) is a solution provided
' 14

E .g.a = }]z— (R" + % ) (44)

14




e R E

N S I T S
SRR R TR g B g AR G e et

S@nce the member on the left is a function of t alone and that on the
right is a function of r alone, they must be equal to a constant, say.
-8-. Hence, one has equations

rR" + R' + g2pR

"
o

(45)
8' + a8%8 = 0 (46)

The equaticn in R is Bessel's equation. The complete solution for
R can be written

+

R(r) = A Jg(er) + B Yo(8r) (47)

The solution of equation (46) can be written

-aB?t

a(t) = Ce (48)

where A, B, and C are constants that can be determined from equations
(14), (15), and (16). Under equations (14) and (15), one finds that

> 0y e “RE [h ¥ (502) + KepY,(842)] Jo(8nr) (49)

Tb(r,t) ~
n=1

where 8 = g are the roots of the following equation

¢
1

fh do(sb) - Kad (sb)] [h Y,(sa) + KeY (sa)]

- [hldo(sa) + KBJl(ea)1 [tho(Bb) - KsY,(8b)] = 0 (50)
This equation can be noted to be identical to equation (30).

At t = 0, using equations (16) and (49), one has

f(r) - Tg(r) = :f; Dy ColBn,r) ~(51)
n::

15
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where ColBpsr) = [leo(Bna) + KBnYI(Bna)] Jo(Bpr)
- [hydo(Bna) + Kepdi(8pa)d Yo(pr) (52)

The constants D can be determined by use of the fact that the
set of cylinder functions

EO(Bn,Y'.); n = ], 2’ 3, LY .
is an orthogenal set on the interval a < r < b. Hence, one obtains

b
r Co(Bpor) (f(r) - To(r)) dr

Dy = =2 (53)

| v T2 (8ar) dr
a

In compact form, equation (49) can be written

M

-aB2t = 5
D, e " n" ColBpsr) (54)

Tb(r’t) = n

=3
n
——nd

where D, is defined by equation (53), and Cy(8,sr) is defined by equa-
tion (52).

SUMMARY

The analytical solution to the probiem formulated in a previous
section is given by the sum of equations (40), {43), and (53?. The gas
and the natural convection coefficients h, and h,, respectively, can be
assumed to be variable for each time interval. %he initial temperature
distribution av the beginning of each time interval will be set equal
to the final temperature distribution of the previous time interval.

I¥ the temperature distribution of a barrel under continuous firing
conditions is sought, the final temperature distribution of one firing
round will te considered as the initial temperature distribution of the
successive firing round.

16
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